What are effective descent morphisms of Priestley spaces?

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Descent for Priestley Spaces

A characterization of descent morphism in the category of Priestley spaces, as well as necessary and sufficient conditions for such morphisms to be effective are given. For that we embed this category in suitable categories of preordered topological spaces were descent and effective morphisms are described using the monadic description of descent.

متن کامل

Effective Descent Morphisms in Categories of Lax Algebras

In this paper we investigate effective descent morphisms in categories of reflexive and transitive lax algebras. We show in particular that open and proper maps are effective descent, result that extends the corresponding results for the category of topological spaces and continuous maps. Introduction A morphism p : E → B in a category C with pullbacks is called effective descent if it allows a...

متن کامل

Stone Spaces versus Priestley Spaces

[1] B. Banaschewski, Über nulldimensionale Räume, Math. Nache 13 (1955) 129-140. [2] F. Borceux and J. Janelidze, Galois Theories, Cambridge University Press (2001). [3] M. Dias and M. Sobral, Descent for Priestley Spaces, Appl. Categor. Struct 14 (2006) 229-241. [4] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge Mathematical Texbooks (1990). [5] R. Engelking and...

متن کامل

Effective Étale - Descent Morphisms in M - Ordered Sets Pier Giorgio

Following the results obtained in Preord and in Cat, we characterize the effective étale-descent morphisms inM -Ord, the category ofM -ordered sets for a given monoid M . Furthermore we show that in M -Ord every effective descent morphism is effective for étale-descent (while the converse is false), and we generalize it to a more general context of relational algebras.

متن کامل

Forbidden Forests in Priestley Spaces

We present a first order formula characterizing the distributive lattices L whose Priestley spaces P(L) contain no copy of a finite forest T . For Heyting algebras L, prohibiting a finite poset T in P(L) is characterized by equations iff T is a tree. We also give a condition characterizing the distributive lattices whose Priestley spaces contain no copy of a finite forest with a single addition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2014

ISSN: 0166-8641

DOI: 10.1016/j.topol.2014.02.023